M1.B

M2.C

M3.B

M4. (a) $\Delta H=\Sigma \Delta H_{\text {(}}$ (products) $-\Sigma \Delta H_{\text {(}}$ (reactants)
$=-201-242-(-394)$
$=-49 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$+49 \mathrm{~kJ} \mathrm{~mol}^{-1}=1$ mark units not required, wrong units lose 1 mark
(b) $\Delta S=\Sigma S$ (products) $-\Sigma S($ reactants)
$=238+189-(214+3 \times 131)$
$=-180 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
+180 = 1 mark
units not required, wrong units lose 1 mark
(c) $\Delta G=\Delta H-T \Delta S$

If use G not ΔG penalise $M 1$ but not $M 2$ and $M 3$
1
(ΔS is negative so) at high temp $-T \Delta S$ (is positive and) greater than $\Delta H /$ large

$$
\text { So } \Delta G>0
$$

Independent mark unless positive ΔS value used
(Limiting condition $\Delta G=0$ so) $T=\Delta H / \Delta S$
$=272 \mathrm{~K}$
Allow 297-298 if used given values.
Do not award M5 if T-ve or if M4 should give T-ve

Reaction is too slow at this temperature/to speed up the reaction
(d) $\mathrm{CH}_{3} \mathrm{OH}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Allow multiples.
Ignore state symbols.
Do not allow equation for wrong compound but mark on provided number of moles increases or stays the same. If no equation or equation that gives a decrease in the number of moles,
$C E=0$
2.5 mol give 3 mol (gases)

Allow statement 'increase in number of moles/molecules' If numerical values given, they must match the equation in M1
Ignore the effect of incorrect state symbols on the number of moles of particles unless used correctly

Therefore ΔS is positive/entropy increases
If correct deduction from wrong equation is $\Delta S=0$ or ΔS very small must say H-ve
(combustion exothermic so $\Delta H-$ ve so $\Delta H-T \Delta S$) and hence ΔG always negative (less than zero)

Allow G instead of ΔG
Can score 3 out of 4 marks if equation wrong but leads to increase or no change in number of moles
M4 dependent on M3
Note, if equation wrong AND there is an incorrect deduction about the change in number of moles, $C E=0$
(e) $\mathrm{CO}_{2} / \mathrm{CO} / \mathrm{CH}_{4}$ may be produced during H_{2} manufacture/building the plant/transport/operating the plant

M5. (a) Standard enthalpy change, $\Delta H^{\ominus}: \Delta H_{R}=\Sigma \Delta H_{\text {prooucuss }}-\Sigma \Delta H_{\text {teacanans }}$ (1) or cycle

$$
\begin{aligned}
& \Delta H_{R}=(0+[2 \times-242])-(4 \times-92)(1) \\
& =-484+368 \\
& =-116\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\
& \text { Allow max } 1 \text { for }+116 \\
& \text { Standard entropy change, } \Delta \mathrm{S}^{\boldsymbol{\theta}}: \Delta \mathrm{S}=\Sigma \Delta \mathrm{H}_{\text {trooucts }}-\Sigma \Delta \mathrm{H}_{\text {traeatant }} \\
& \Delta S=([2 \times 223]+[2 \times 189])-(205+[4 \times 187])(1) \\
& =824-953 \\
& =-129\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
& \text { allow max one for }+129
\end{aligned}
$$

(b) (i) Effect: Equilibrium displaced to right / to products (1) Explanation: Reaction is endothermic (1)

Constraint reduced (1)
mark separately
(ii) Feasible when $\Delta G \leq 0$ (1)
$\Delta G=\Delta H-T \Delta S(1)$
$\mathrm{T}=\Delta H / \Delta S=208 \times 1000(1) / 253$
$=822 \mathrm{~K}(1)$

M6.A

M7. (a) (i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
(ii) The negative S^{-}ion
repels the added electron
(iii) Step B is the atomisation enthalpy of sulphur

Step D is the second ionisation enthalpy of calcium
(iv) Electrons nearer to the nucleus

Electrons removed from a positive species or more strongly attracted
(v) $+178+279+590+1145-200+539+G+482=0$
$G+3013=0$ hence $G=-3013$
(b) The model used assumes the ions are spherical and in a lattice

The calculated value is smaller than the cycle value or stronger attraction

Indicating some covalent character or ions are polarised
(c) (i) For a reaction to occur $\Delta \mathrm{G}<0$
ΔS is positive and large as a gas is evolved
$T \Delta S$ is larger than ΔH and ΔG is negative
(ii) $\Delta \mathrm{S}$ is negative

Four moles gaseous reactant forming or more moles of gaseous product

At high temperature $T \Delta S$ is larger than ΔH and ΔG is positive

M8.C

M9.C

